2015

BIOCHEMISTRY

Paper - BCT - 105

(Biomolecules)

Full Marks - 25

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words as far as practicable

Group - A

Answer Question No. 1 and any one from Q.2 and Q.3

1.	Indi	cate	which one of	the giver	option is true? Justify your answer. 3				$\times 2$		
	A.	The	The tertiary structure of tRNA								
		i involves extensive base stacking interactions									
		ii.	iii. Contains large number of modified bases and agree to a support of the large number of modified bases are agreed to be a large number of modified bases are agreed to be a large number of modified bases are agreed to be a large number of modified bases.								
		iii.									
			iv. all of the above								
	B.	Ret	Retroviruses replicate via intermediate								
		i.	RNA		ii	mRNA					
		iii.	DNA		iv.	rDNA					
	C.	RN	RNA instability in alkaline solutions is due to								
		i.	adenine		ii.	ribose					
		iii.	uracil		iv.	single strand na	ature				
2.	(a)	If a	double stra	nded RNA	\ vi	rus infects a cell	which is com	pletely			
devoid	of all	kind	of nucleases	, what wi	ll ha	appen to the vira	l RNA ? Expla	in.	2		
	(b)	Wh	nat is nonsen	ce mediat	ed r	nRNA decay?			2		
3.	(a)	Giv	ven the follo	owing sec	luen	ace of a RNA, j	propose the po	otential			
hairpin	struct	ure f	for this RNA	. Indicate	the	base pairing wit	h a dotted line.		2		
5'-AGG	ACC	CUL	JCGGGGUU	JCU-3'		emplex () 11					
	(b)	Ex	plain why th	e helical	stru	cture of DNA di	iffers from the	helical			
structur	e of	RNA	A and how	that diffe	reno	ce in structure	affects the ab	ility of			
proteins	to in	iterac	ct with helica	l RNA.					2		
			100								

ato obaquery toq be acidagangas Inc [Turn Over] enale

Group - B

Answer any six questions

21/2×6

4.	Fill in the blanks:								
	When ——— structural elements pack against each other in folded								
proteins, they bring together the sidechains that form the									
core. Th	ne — effect and not the bond formation is the								
dominant factor that drives the folding of protein molecules.									

- 5. How can you describe the helix propensity scale? Name two members at the top and two members at the bottom of this scale.
- 6. Design an experiment to demonstrate the folding of some proteins involves the formation of transiently stable intermediates.
- 7. How can you illustrate the protein folding as funneled movement on a multidimensional free energy landscape ?
- 8. Design an experiment to prove, Repititive DNA components consist of families of sequences that are not exactly the same but are related.
 - 9. Compare the structures of α helix, π helix and 3_{10} helix.
 - 10. What happens if,

A supercoiled DNA with Linking number = 5000

Twisting number = 5200

and Writhing number = -200

- (a) is incubated at pH 1.8
- (b) is heated from 25°C to 95°C
- (c) is treated with Topoisomerase I
- 11. Suppose, the gastrula embryo of sea urchin has a genome of 8.1×10^8 bp of DNA, the non repetitive DNA represents 75% of the genome.
- (a) Calculate the chemical complexity of the non repetitive component.
- (b) 2.70% of the total sequence of non repetitive DNA is represented in the mRNA. Calculate the complexity of DNA represented in the RNA population.
- 12. Cite examples and describe in one sentence : Palindromic sequence, chaperon.
- 13. How protein misfolding can be destined to different diseases? How chaperons can prevent aggregation of polypeptide chains?