2015

BIOCHEMISTRY

Paper - BCT: 305

(Genetics and Genomics)

Full Marks - 25

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words as far as practicable

Group - A

Answer any three questions

- 1. (a) Two black female mice are crossed with the same brown male. In a number of litters, female X produced 9 blacks and 7 browns, and female Y produces 14 blacks. What is the mechanism of inheritance of black and brown coat color? What are the genotypes of the parents?
- (b) Genes a, b and c assort independently and are recessive to their respective alleles A, B and C. Two triply heterozygotes (*Aa Bb Cc*) individuals are crossed. What is the probability that a given offspring will be phenotypically A B C that is, will exhibit all three dominant traits? What is the probability that a given offspring will be homozygous for all three dominant alleles?

Consider the above pedigree. In which the allele responsible for the trait (a) is recessive to the normal allele (A).

- (i) What is the genotype of the mother?
- (ii) What is the genotype of the father?
- (iii) What are genotypes of the children?
- (iv) Given the mechanism of inheritance involved, does the ratio of children with the trait to children without the trait match? What would be expected?
- (b) In humans and the fly *Drosophila melanogaster*, XX animals are female and XY animals are male. How is the expression of X-linked genes equalized in the opposite sexes?

[Turn Over]

2 + 3

- (c) How many Barr bodies would be present in the majority of cells of a person with Turner syndrome and a person with Klinefelter syndrome? 2+2+1
- 3. (a) When females of a particular mutant strain of *Drosophila melanogaster* are crossed to wild-type males, all the viable progeny are females. Hypothetically, the result could be consequence of either a sex-linked, malespecific lethal mutation or a maternally inherited factor that is lethal to males. What crosses would you perform to distinguish between these alternatives?
 - (b) Distinguish between maternal inheritance and maternal effect. 3+2
 - 4. (a) Distinguish dominant epistasis from recessive epistasis.
- (b) Genes A. B and C are independently assorting and control the production of a black pigment.

colorless
$$\xrightarrow{A}$$
 \xrightarrow{B} \xrightarrow{C} black

Suppose A, B and C act in the following pathway. The alternative alleles that give abnormal functioning of these genes are designated a, b and c respectively. A black A/A B/B C/C is crossed with a colorless a/a b/b c/c to give a black F₁. The F₁ is selfed. What proportion of F2 is colorless? (Assume that the product of each step except the last is colorless, so only colorless and black phenotypes are observed.)

5. Two normal looking *Drosophila* are crossed and yield the following phenotypes among their progeny.

3+2

Females:	a⁺b⁺c⁺	2000
Males:	a [†] b [†] c [†]	3
	abc	. 1
	a ⁺ bc	839
	a b tc t	825
	abc ⁺	86
	a ⁺ b ⁺ c	90
	a b c	81
	a [†] b c [†]	75
Total		4000

Show the parental genotypes, the gene arrangement in the female parent and the map distances, and the coefficient of coincidence.

1+3+1

6. (a) In a population of 2000 gaboon vipers, a genetic difference with respect to venom exists at a single locus. The alleles are incompletely dominant. The population shows 100 individuals homozygous for the t allele (genotype, tt, nonpoisonous), 800 heterozygous (genotype Tt, mildly poisonous), and 1100

homozygous allele (genotype TT, lethaly poisonous). What is the allele frequency of the t allele in the population?

(b) The gene for sickle cell anemia exhibits heterozygote advantage. An individual who is an Hb-A/Hb-S heterozygote has increased resistance to malaria and therefore has greater fitness than the Hb-A/Hb-A homozygote who is susceptible to malaria, and the Hb-S/Hb-S homozygote who has sickle cell anemia. Suppose that the fitness values of the genotypes are as presented here:

Hb-A/Hb-A = 0.88

Hb-A/Hb-S = 1.00

Hb-S/Hb-S = 0.14

Give the expected equilibrium frequencies Hb-A and Hb-S alleles.

2+3

Group – B

Answer any one question

- 7. (a) A new protein 'X' is recently discovered from a newly sequenced eukaryotic genome. This protein contains a DNA binding domain, but no other information is available. Design a genomic-based experiment that you could use to gather information on the possible functions of this gene.
- (b) What is the importance of using EMS over another type of mutants from the point of view of functional genomics?
- (c) What is the difference in chip design between a tiling microarray and gene expression based microarray? 2+2+1
- 8. (a) How do you quantify the expression pattern from the raw data of RNAseq?
- (b) What precautions should be taken while designing a gene expression experiment, so that you can minimize the environmental effect?
- (c) Explain the basic difference between the present generation microarray and an old-fashioned microarray. 2+2+1

Group - C

Answer any five questions

 1×5

- 9. The enzyme used in Maxam-Gilbert method for 32-P labelling of the DNA at 3'end is
 - (a) polynucleotide kinase
 - (b) alkaline phosphatase

[Turn Over]

- (c) exonuclease
- (d) terminal nucleotidyl transferase.
- 10. Automated DNA sequencing is an improvement of Sanger's method where
 - (a) ddNTPs are used for chain termination
 - (b) PCR is used for making sequencing templates
 - (c) Fluorescently labelled dNTPs are used for chain termination
 - (d) Fluorescently labelled ddNTPs are used for chain termination.
- 11. Optical mapping
 - (a) Uses restriction enzymes
 - (b) Is normally done with metaphase chromosomes
 - (c) Determines the position of restriction sites in a DNA molecule
 - (d) Always uses a fluorescent dye.
- 12. Whole-genome shotgun sequencing approach depends primarily on
 - (a) rapidly sequencing thousands of small randomly cloned fragments
 - (b) methodical sequencing a few large cloned fragments of DNA
 - (c) sequencing the bacterial chromosome while it is still intact
- 13. You need to use a first generation sequencing method for de novo sequencing, which template should give optimum results for this project?
 - (a) Genomic DNA
 - (b) PCR product
 - (c) Bacterial artificial chromosome
 - (d) Plasmid DNA
- 14. What would happen if apyrase is omitted from a pyrosequencing reaction mixture ?
 - (a) DNA synthesis would stop immediately
- (b) All the dNTPs, except dATP, would serve as substrates for DNA polymerase
- (c) Luminescence would be detected in the wells even if the next dNTP would not be incorporated into the growing DNA chain
- (d) DNA synthesis would continue, but luminescent signals would not be detected.
 - 15. ddNTP is different from dNTP in having
 - (a) H in place of OH in 3' position of dNTP
 - (b) OH in place of H in 3' position of dNTP
 - (c) OH in place of H in 2' position of dNTP
 - (d) CH3 in place of OH in 3' position of dNTP.