

UNIVERSITY OF CALCUTTA

FACULTY ACADEMIC PROFILE

■ Full name of the faculty member: Dr. Chanchal Dey

■ **Designation**: Associate Prof.

■ Specialization: Instrumentation & Control Engineering

■ Contact information:

Instrumentation Engineering
Department of Applied Physics
92, APC Road, Kolkata-700009, West Bengal, India
E-mail: cdaphy@caluniv.ac.in, chanchaldey@yahoo.co.in

■ Academic qualifications:

College/ University	Abbreviation of the degree
West Bengal Board of Secondary Education	Secondary Examination, 107 th Rank
West Bengal Board of Higher-Secondary Education	Higher Secondary Examination, 62 nd Rank
Jadavpur University	B. Sc. (Physics Hons.)
Jadavpur University	B. Tech. (Instrumentation & Electronics Engineering)
University of Calcutta	M. Tech. (Instrumentation & Control Engineering), Gold Medalist
Jadavpur University	Ph. D. (Engineering)

■ Positions held:

- Section-in-charge, Instrumentation Engineering, Dept. of Applied Physics, 2017-2020
- Associate Professor, Instrumentation Engineering, Dept. of Applied Physics, 2015-
- Assistant Professor, Instrumentation Engineering, Dept. of Applied Physics, 2003-2015
- Guest Lecturer, Instrumentation and Electronics Eng., Jadavpur University, 1999-2003
- Lecturer, Dept. of Technical Education and Training, Govt. of West Bengal, 1997-2003
- Engineer, Gas Authority of India Limited (GAIL), Govt. of India Enterprise, 1996-1997

■ Research interests:

- Intelligent process control using conventional, fuzzy, and neuro-fuzzy techniques
- Knowledge based controller designing

■ Research guidance:

Number of researchers submitted Ph.D. Thesis: 6

Name	Affiliation	
Dharmana Simhachalam	HOD, Electronics and Instrumentation Engineering, SGPR Government Polytechnic, Kurnool, Andhra Pradesh	
Ujjwal Manikya Nath	Asst. Prof., Jorhat Engineering College, Jorhat, Assam	
Ritu Rani De (Maity)	Asst. Prof., B. C. Roy College of Engineering, Durgapur, West Bengal	
Pubali Mitra (Paul)	Asst. Prof., Brainware University, Barrackpur, West Bengal	
Pranati Dutta (Ghosal)	Asst. Prof., Techno India Sallake, Kolkata, West Bengal	
Abhinava Dutta	Asst. Prof., Academy of Technology, Hooghly, West Bengal	

Number of researchers pursuing Ph.D.: 4

Name	Affiliation
Parikshit Kumar Paul	Asst. Prof., Calcutta Institute of Engineering & Management, West Bengal
Somak Karan	Asst. Prof., Halida Engineering College, Haldia, West Bengal
Sayani Sengupta	Asst. Prof., Techno International Newtown, Kolkata, West Bengal
Satyaki Sen	Lecturer, Nazrul Centenary Polytechnic, West Bengal

• Number of M. Tech. Thesis submitted: 47

■ Projects completed:

Project Title	Funding Agency
Technical Education Quality Improvement Program	World Bank, Govt. of India, and State Govt.
(TEQIP-Phase I)	Seventy lakhs (approx)
Technical Education Quality Improvement Program	World Bank, Govt. of India, and State Govt.
(TEQIP-Phase II)	Fifty lakhs (approx)
Technical Education Quality Improvement Program	World Bank, Govt. of India, and State Govt.
(TEQIP-Phase III)	Five lakhs (approx)
Earlier detection of cardiac irregularity based on human	National Project Implementation Unit
blood pressure model	Rupees sixteen lakhs fifty one thousand only (approx)

■ List of International Journal Publications:

Title with Page No.	Journal	ISSN
 An improved auto-tuning scheme for PI controllers, pp. 45-52. 	ISA Transactions, Vol. 47, No. 1 2008	0019-0578
 An improved auto-tuning scheme for PID controllers, pp. 396-409 	ISA Transactions, Vol. 48, No. 3, 2009	0019-0578
 Dynamic set point weighted PID controller, pp. 212-219 	Journal of Control and Intelligent Systems, Vol. 37, No. 4, 2009	1925-5810
 Performance improvement of PI controllers through dynamic set- point weighting, pp. 220-230 	ISA Transactions, Vol. 50, No. 2, 2011	0019-0578
 An auto-tuning PID controller for integrating plus dead-time processes, pp. 4934-4943 	Journal of Advanced Materials Research, Vols. 403-408, 2012	1022-6680
 Rule extraction through self- organizing map for a self-tuning fuzzy logic controller, pp. 4957- 4964 	Journal of Advanced Materials Research, Vols. 403-408, 2012	1022-6680
 Model based PID controller for integrating process with its real time implementation, pp. 139-144 	International Journal of Advancements in Electronics and Electrical Engineering, Vol. 1, No. 2, 2012	2319 - 7498
 A simple nonlinear PD controller for integrating processes, pp.162- 172 	ISA Transactions, Vol. 53, No. 1, 2014	0019-0578

•	 Centralized auto-tuned IMC-PI controllers for a real time coupled tank process, pp. 1094-1102 	International Journal of Science Technology and Management	2394-1537
		Vol. 4, No. 1, 2015	
•	 Model identification and experimental verification of MRAC 	International Journal of Advance Research in Science and Engineering	2319-8354
	on 1 DOF TRMS process, pp. 251-264	Vol. 5, No. 4, 2016	
•	Performance evaluation of model reference adaptive control (MRAC)	International Journal of Advance Research in Science and Engineering	2319-8354
	on Twin Rotor MIMO system, pp. 265-273	Vol. 5, No. 4, 2016	
•	Dynamic set point weighting for	Journal of Control and Intelligent Systems,	1925-5810
	fuzzy PID controller", Control and Intelligent Systems, pp. 142-153	Vol. 45, No. 3, 2017	
•	Relay feedback-based improved	Journal of Control and Intelligent Systems,	1925-5810
	critical point estimation for FOPTD process with real-time verification	Vol. 46, No. 3, 2018	
•	Enhanced critical point assessment	Mechatronic Systems and Control	2561-178X
	with relay feedback	Vol. 46, No. 4, 2018	
•	Fuzzy tuned model based control	Microsystem Technologies	0946-7076
	for level and temperature processes	Vol. 25, 2019	
		https://doi.org/10.1007/s00542-019-04300-x	
•	Improved disturbance rejection with	SN Applied Sciences	2523-3971
	modified Smith predictor for integrating FOPTD processes	Vol. 1, No. 10, 2019	
•	A switching IMC-PID controller	Mechatronic Systems and Control	2561-178X
	design for lag dominating processes with real-time validation	Vol. 48, No. 3, 2020	
•	Fuzzy rule-based auto-tuned internal model controller for real-	International Journal of Automation and Control	1740-7516
	time experimentation on temperature and level processes	Vol. 14, No. 2, 2020	
•	Simple tuning of modified Smith	International Journal of Nanoparticles	1753-2507
	predictor for unstable FOPTD processes	Vol. 12, No. 1-2, 2020	
•	Designing of dynamic Kalman filter	Procedia Computer Science	1877-0509
	for prediction of mean arterial blood pressure	Vol. 167, 2020	
		https://doi.org/10.1016/j.procs.2020.03.347	
 Designing of fuzzy rule based switching mechanism for IMC controller for temperature 		Procedia Computer Science	1877-0509
	controller for temperature	Vol. 167, 2020	
	controlling process	https://doi.org/10.1016/j.procs.2020.03.347	
•	Nature Inspired Algorithm Based Optimal Type-2 Fuzzy Controller	International Journal of Electrical Engineering	2249-3085

	With Real-Time Validation on	& Technology	
	Servo System	Vol. 11, No. 2, 2020	
•	Stabilized IMC-PI controller	IFAC-Papers Online	2405-8963
	designing for IPDT processes based on gain and phage margin criteria	Vol. 53, No. 1, 2020	
•	Comparative Performance Study of Optimal Interval Type-2 Fuzzy PID	International Journal of Computer Sciences and Engineering	2347-2693
	Controllers with Practical System	Vol. 8, No. 3, 2020	
•	Modified Smith predictor-based all-	Asia-Pacific Journal of Chemical Engineering	1932-2135
	proportional-derivative control for second-order delay-dominated integrating processes	Vol. 16, No. 2, 2020	
•	An auto-tuning modified Smith predictor for delay dominated	Turkish Journal of Computer and Mathematics Education	1309-4653
	integrating processes	Vol. 11, No. 1, 2020	
•	A 4 bit highly energy and area	Microsystem Technologies	0946-7076
	efficient SC SAR ADC based on a combinational technique with	https://doi.org/10.1007/s00542-019-04672-0,	
	reduced reset energy	2020	
•	Nature-inspired and hybrid	SN Applied Sciences	2523-3971
	optimization algorithms on interval Type-2 fuzzy controller for servo	https://doi.org/10.1007/s42452-020-3024-5,	
	processes: a comparative performance study	2020	
•	 Designing of IMC-PID controller 	Chemical Product and Process Modeling	1934-2659
	for higher-order process based on model reduction method and fractional coefficient filter with real-time verification	Vol. 15, No. 3, 2020	
•	Desired Characteristic Equation	IEEE Control Systems Letters	2475-1456
Based PID Controller Tuning for Lag-Dominating Processes With Real-Time Realization on Level Control System		Vol. 5, No. 4, 2021	
•	Lyapunov approach based design of	Journal of Intelligent & Fuzzy Systems	1064-1246
	a gain adaptive interval type-2 fuzzy controller for servo systems	Vol. 40, No. 3, 2021	
•	Study of a Noncontact Flow Transducer Using Semi-cylindrical	IEEE Transactions on Instrumentation and Measurement	1557-9662
	Capacitive Sensor	Vol. 70, doi: 10.1109/TIM.2020.3024027,	
		2021	
•	Review on IMC-based PID Controller Design Approach with	IETE Journal of Research	0377-2063

	Experimental Validations	https://doi.org/10.1080/03772063.2021.1874839	
		2021	
•	r uzzy rate ousea set point	S N Applied Science	2523-3971
	weighting for fuzzy PID controller	https://doi.org/10.1007/s42452-021-04626-0, 2021	
•	Simplified tuning of IMC based	Chemical Product and Process Modeling	1934-2659
	modified smith predictor for UFOPDT processes	Vol. 16, No. 1 2021	
•	Realization of an ultra low power	Microsystem Technologies	1432-185
	and area efficient SC SAR ADC architecture using single and two step reset methods	Vol. 27, No. 9, 2021	
•	Modified Smith predictor-based	The Canadian Journal of Chemical Engineering	1939-019x
	P-PD control for pure integrating delay dominated processes	https://doi.org/10.1002/cjce.24305, 2021	
•	IMC based anti-windup controller	International Journal of Automation and Control	1740-7516
	for real-time hot air flow and level control loop	Vol. 16, No. 2, 2022	
•	 Realization of a variable resolution modified semiflash ADC based on bit segmentation scheme 	Facta universitatis-series: Electronics and Energetics	2217-5997
		Vol. 35, No. 1, 2022	
•	Stable optimal self-tuning interval	International Journal of Automation and Control	1740-7516
	type-2 fuzzy controller for servo position control system	Vol. 16, No. 5, 2022	
•	simple internal model control casea	ISA Transactions	0019-0578
	modified Smith predictor for integrating time delayed processes with real-time verification	Vol. 121, 2022	
•	Mathematical modelling and fuzzy knowledge-based decoupled control	International Journal of Modelling and Simulation	0228-6203
	scheme for real-time interacting level control- MIMO system	https://doi.org/10.1080/02286203.2022.2051992	
	lever conduct 1411410 system	2022	
•	Modified Smith predictor-based	The Canadian Journal of Chemical Engineering	1939-019X
	P-PD control for pure integrating delay dominated processes	Vol. 100, No. 10, 2022	
	Freedom	https://doi.org/10.1002/cjce.24305	
	MSP designing with optimal	Chemical Product and Process Modeling	1934-2659
	fractional PI–PD controller for IPTD processes	https://doi.org/10.1515/cppm-2022-0041	

■ List of International Conference Publications:

Title with Page No.	Details of Conference Publication	ISSN/ ISBN
 An Improved Fuzzy PI Controller Through Real- time Modification of the Output Scaling Factor, pp. 115-120 	Proc. 5 th Int. Conf. On Advances in Pattern Recognition - ICAPR 2003	ISBN: 8177645323-9788177645323
 An Augmented Ziegler- Nichols Tuned PI Controller, (in CD) 	Proc. Int. Conf. on Computers and Devices for Communication - CODEC 2004	ISBN: 978-1-4673-2620-9
 An Improved Fuzzy PI Controller, pp. 115-119 	Proc. Int. Conf. on Communication, Devices and Intelligent Systems - CODIS 2004	ISBN: 978-1-4673-4699-3
■ A Conventional PD Controller with Self-tuning Feature, pp. 219-233	Proc. IEE Int. Conf. on Energy, Information Technology and Power Sector - PETSICON 2005	ISBN: 81-88429-79-1
 Design of a PI-type Fuzzy Controller with online Membership Function Tuning, pp. 112-117 	Proc. 12 th Int. Conf. on Neural Information Processing - ICONIP 2005	ISBN: 1-3658-3615-7
 A dynamic set point weighting based Ziegler- Nichols tuned PI controller, pp. 6-10 	Proc. Asian Conference on Intelligent Systems & Networks - AISN 2006	ISBN: 988-1-2673-4799-1
 Neuro-Fuzzy Implementation of a Self-tuning Fuzzy Controller, pp. 5065-5070 	Proc. IEEE Int. Conf. on System, Man, Cybernetics - SMC 2006	ISBN: 1-4244-0099-6
 A PID Controller with Dynamic Set Point Weighting, in CD 	Proc. IEEE Int. Conf. on Industrial Technology - ICIT 2006	ISBN: 1-4244-726-5
■ A Ziegler-Nichols Tuned PID Controller with Auto- tuning Feature, pp. 321-325	Proc. Int. Conference on Modeling and Simulation - MS 2007	Published by Calcutta University Press
 Experimental Verification of an Auto-tuning PD Controller on Position Control Application for a DC Servo Motor, pp. 694-699 	Proc. IEEE Int. Conf. on System Dynamics and Control - ICSDC 2010	ISBN: 1-5143-787-5

■ An Auto-tuning PID Controller for Integrating Plus Dead-time Process, pp. 131-135	Proc. Int. Conf. on Control, Robotics and Cybernetics - ICCRC 2011	ISBN: 978-1-4244-9711-9
■ Rule Extraction through Self-organizing Map for a Self-tuning Fuzzy Logic Controller, pp. 156-160	Proc. Int. Conf. on Control, Robotics and Cybernetics - ICCRC 2011	ISBN: 978-1-4244-9711-9
 Model Based PID Controller with its Real-time Implementation, pp. 62-66 	Proc. Int. Conf. on Advances in Computing, Control and Communication - CCN 2012	ISBN: 978-981-07-2579-2
A Self-tuning Fuzzy PID Controller with Real-time Implementation on a Position Control System, pp. 32-35	Proc. IEEE Int. Conf. on Emerging Applications of Information Technology - EAIT 2012	ISBN: 978-1-4673-1825-9
 An Auto-tuning PD Controller for DC Servo Position Control Application, pp. 1-6 	Proc. IEEE Int. Conf. on Power, Control and Embedded Systems - ICPCES 2012	ISBN: 978-1-4673-1049-9
■ Fuzzy PI Controller with Dynamic Set-point Weighting, pp. 51-58	Proc. Springer Int. Conf. on Frontiers of Intelligent Computing: Theory and Applications - FICTA 2012	ISBN 978-3-642-35313-0
■ A Nonlinear PD Controller for Pure Integrating Process with Delay, pp. 783-786	Proc. IEEE Int. Conference on Electrical and Computer Engineering - ICECE 2012	ISBN: 978-1-4673-1434-3
 Design of Model Based PI Controller for Integrating Process, pp. 102-114 	Proc. Elsevier Int. Conf. on Electrical, Electronics and Communication Technologies - ICECIT 2012	ISBN: 978-9-3510-7050-4
 An Adaptive PD Type FLC with Its Real-Time Implementation on a Servo Position Control System, pp. 1-7 	Proc. IEEE Int. Conf. on Fuzzy Systems - FUZZ-IEEE 2013	ISBN: 978-1-4799-0020-6
■ Dynamic Set-point Weighted Fuzzy PID Controller, pp. 107-110	Proc. IEEE Int. Conf. on Computational and Business Intelligence - ISCBI 2013	ISBN: 978-0-7695-5066
 Design of Fuzzy Based IMC- PID Controller for IPD Process, pp. 111-114 	Proc. IEEE Int. Conf. on Computational and Business Intelligence - ISCBI 2013	ISBN: 978-0-7695-5066

■ IMC-PID controller for pure integrating process with large dead time, pp. 76-80	Proc IEEE Int. Conf. on Control, Instrumentation, Energy and Communication - CIEC 2014	INSPEC Acc. No.:14771693 DOI:10.1109/CIEC.2014 .6959042
 An Online Dynamic Set- point weighting Scheme for PID Controller, pp. 188-192 	Proc IEEE Student's Technology Symposium - Tech Sym 2014	ISBN: 978-1-4799-2607-7
■ Design of Fuzzy-IMC PID	Proc IEEE Int. Conf. on	INSPEC Acc.
Controller for TITO Process with Time Delay, pp. 70-74	Emerging Applications of Information Technology -	No.: 14950052
, , , , , ,	EAIT 2014	DOI: 10.1109/
		EAIT.2014.55
■ Neuro-Fuzzy design of a	Proc. IEEE Int. Conf. on	INSPEC Acc.
Fuzzy PI Controller with Real-Time Implementation	Contemporary Computing and Informatics - IC3I 2014	No.: 14871825
on a Speed Control System,	mormatics - 1031 2014	DOI: 10.1109/
pp. 645-650		IC3I.2014. 7019575
 Design and implementation of a Fuzzy PI Controller on a servo speed control application, pp. 384-387 	Proc. IEEE Int. Conference on Signal Processing and Integrated Networks - SPIN 2015	ISBN: 978-1-4799-5991-4
■ Design of IMC Controller for	Proc. Springer Second Int.	ISBN: 978-81-322-2525-6, DOI:
TITO Process with dynamic close-loop time constant, pp. 191-200	Conf. on Second International Conference on Computer and Communication Technologies, IC3T 2015	10.1007/978-81-322-2526-3_21
■ Rule reduction of neuro-	Proc. Springer Second Int.	ISBN: 978-81-322-2525-6, DOI:
fuzzy PI controller with real- time implementation on a speed control process, pp. 445-458	Conf. on Second International Conference on Computer and Communication Technologies, IC3T 2015	10.1007/978-81-322-2526-3_46
■ Centralized auto-tuned IMC-PI controllers for a real time coupled tank process, pp. 5527-5535	Proc. Int. Conf. on Recent Trends in Engineering Science and Management, ICRTESM 2015	ISBN: 978-81-931039-2-0
■ Centralized auto-tuned IMC-PI controllers for industrial coupled tank process with stability analysis, pp. 296-301	Proc. IEEE Int. Conference on Recent Trends in Information Systems, ReTIS 2015	ISBN: 978-1-4799-8349-0/15
 Design and Implementation of De-centralized IMC-PI controllers for real time coupled tank process, pp. 93- 98 	Proc. Michael Faraday IET International Summit, MFIIS 2015	ISBN: 978-1-5108-1714-2

 An improved dynamic set point weighted PI controller for servo position control application, pp. 110-118 	Proc. IEEE International Conference on Computational Intelligence and Network, CINE 2016	ISSN: 2375-5822
 An improved fuzzy PID controller with fuzzy rule based set-point weighting technique, pp. 40-44 	Proc. IEEE International Conference on Control, Instrumentation, Energy and communication, CIEC 2016	ISBN: 978-1-5090-0035-7
 Design of multi-loop IMC- PID controller for TITO process with dead time, pp. 45-49 	Proc. IEEE International Conference on Control, Instrumentation, Energy and communication, CIEC 2016	ISBN: 978-1-5090-0035-7
 Model identification and experimental verification of MRAC on I DOF TRMS process pp. 1011-1024 	Proc. International Conference on Recent Trends in Engineering Science and Management ICRTESM 2016	ISSN: 2319-8354
■ Performance evaluation of Model Reference Adaptive Controller (MRAC) on Twin Rotor MIMO System pp. 1025-1033	Proc. International Conference on Recent Trends in Engineering Science and Management ICRTESM 2016	ISSN: 2319-8354
■ Fuzzy based adaptive IMC-PI controller for real time application on a level control loop, pp. 387-396	Proc. Springer International Conference on Frontiers of Intelligent Computing: Theory and Applications, FICTA 2016	• ISBN: 978-981-10-3153-3
■ Real-time performance evaluation of a self-tuning fuzzy PID controller on an inverted pendulum in crane mode operation, pp. 22-26	Proc. IEEE International Conference on Intelligent Control Power and Instrumentation - ICICPI 2016	• ISBN: 978-1-5090-2638-8
 Model identification of coupled-tank system-MIMO process, pp. 1-6 	Proc. IEEE International Conference on Electrical Computer and Communication Technologies - ICECCT 2017	• ISBN: 978-1-5090-3239-6
 Design and Performance Analysis of a Modified MRAC for Second-order Processes, pp. 1-5 	IEEE International Conference on Power Control and Embedded systems - ICPCES 2017	• ISBN: 978-1-5090-4426-9
 Design of Modified Model- based Adaptive Control System for FOPDT Process pp. 1-5 	IEEE International Conference on Power Control and Embedded systems - ICPCES 2017	• ISBN: 978-1-5090-4426-9
■ Fuzzy-based Auto-tuned	Springer International	• ISBN: 978-981-10-3152-6

IMC-PID Controller for Real-time Level Control Process, pp. 372-381	Conference on Computational Intelligence, Communications, and Business Analytics - CICBA 2017	
■ Fuzzy rule based set-point weighting for PID controller pp.841-846	Springer International Conference on Communication Devices and Networking - ICCDN 2017	ISBN: 978-981-10-7901-6
 Designing Of An Improved MRAC With Fuzzy-PD Feedback For Marginally 	IEEE International Conference on Emerging Applications of Information Technology	10.1109/EAIT.2018.8470448
Stable Processes	EAIT 2018	
■ Real-time evaluation of an interval type-2 fuzzy PID controller on servo position	IEEE International Conference on Emerging Applications of Information Technology	10.1109/EAIT.2018.8470448
control system	EAIT 2018	
■ Enhanced Modified Smith Predictor for Delay	IEEE Electron Devices Kolkata Conference	10.1109/EDKCON.2018.8770465
Dominated Unstable Processes	EDKCON 2018	
■ Real-time performance evaluation of a fuzzy rule based set point weighted PID controller	IEEE Applied Signal Processing Conference ASPCON 2018	10.1109/ASPCON.2018.8748295
■ A 4 bit combinational hybrid-junction splitting technique for realization of an energy efficient SC SAR	IEEE International Conference on Opto-Electronics and Applied Optics	10.1109/OPTRONIX.2019.8862341
ADC	Optronix 2019	
■ IMC based fractional-order controller for a level process	IEEE International Conference on Opto-Electronics and Applied Optics	10.1109/OPTRONIX.2019.8862341
	Optronix 2019	
 Set point weighted modified Smith predictor for delay dominated integrating 	IEEE International Conference on Devices for Integrated Circuit	10.1109/DEVIC.2019.8783297
processes	DevIC 2019	
 Designing of anti-windup feature for internal model controller with real-time performance evaluation on 	IEEE International Conference on Intelligent Computing, Instrumentation and Control Technologies	10.1109/ICICICT46008.2019.8993175
temperature control loop	ICICICT 2019	
■ Enhanced half rule based model reduction scheme for	IEEE International Conference on Intelligent Computing,	10.1109/ICICICT46008.2019.8993175

higher-order processes	Instrumentation and Control Technologies	
	ICICICT 2019	
■ Fuzzy Supervisory Expert Tuner for PID Controller	Springer International Conference on Microelectronics, Computing and Communication Systems	ISBN: 978-981-15-5546-6
	MCCS 2019	
■ Fuzzy Rule-Based Supervisory PID Auto-Tuner for TRMS Process	Springer International Conference on Microelectronics, Computing and Communication Systems	ISBN: 978-981-15-5546-6
	MCCS 2019	
 Design of a Modified 8-bit Semiflash Analog to Digital 	IEEE Conference on Devices for Integrated Circuit	10.1109/DevIC50843.2021.9455820
Converter	DevIC 2021	
 Auto-tuned Optimal PI Controllers for MIMO Processes 	IEEE 4th International Conference on Computing, Power and Communication Technologies	10.1109/GUCON50781.2021.9574003
	GUCON 2021	
 Optimal Biquadratic 	IEEE Conference	
Approximation of the Fractional-Order Laplacian Operator Yielding Improved Constant-Phase Behavior	CALCON 2022	

■ List of Published Book Chapters:

Title with Page No.	Book Title, Editor, and Publisher	ISSN/ ISBN
A Gain Adaptive Fuzzy Logic Controller, pp. 62-68	Lecture Notes in Artificial Intelligence 2275, Springer-Verlag	Book ISBN: 10:3-540- 431500
Fuzzy Rule-Based Set Point Weighting for PID Controller	Advances in Communication, Devices and Networking,	Book ISBN: 978-981- 10-7900-9
Chapter No.: 86	Springer Nature Singapore Pte Ltd.	
Fuzzy-tuned SIMC controller for level control loop, Vol. 11	Lecture Notes in Networks and Systems	Book ISBN: 978-981- 10-3952-2
	Springer Nature Singapore Pte Ltd.	
Design and Performance Analysis of a	Springer Communications in Computer	Book ISBN: 978-981-

Modified MRAC for Second-order	and Information Science	10-6427-2
Integrating Processes, Vol. 775	Springer Nature Singapore Pte Ltd.	
Industrial Automation Technologies	CRC Press, London	ISBN: 9780367260422
376 pages A Low Energy and Area Efficient Switching Scheme for a Charge Redistribution SAR ADC Architecture	Advances in Smart Communication Technology and Information Processing, Springer Lecture Notes in Networks and Systems Springer Nature Singapore Pte Ltd.	ISBN: 978-981-15- 9432-8
Switching Mechanism of Internal Model Control-based PI Controller for Lag Dominating Processes	Nanoelectronics, Circuits and Communication Systems, Springer Lecture Notes in Electrical Engineering book series (LNEE,volume 692)	ISBN: 978-981-15- 7485-6
Controlling of Twin Rotor MIMO System (TRMS) based on Multivariable Model Predictive Control	Springer Nature Singapore Pte Ltd. Nanoelectronics, Circuits and Communication Systems, Springer Lecture Notes in Electrical Engineering book series (LNEE,volume 692)	ISBN: 978-981-15- 7485-6
	Springer Nature Singapore Pte Ltd.	
Fuzzy Rule-Based Set Point Weighting for PID Controller	Lecture Notes in Electrical Engineering book series	ISBN: 978-981-10-7900-9
	Springer LNEE, volume 462	

■ Invited Lectures:

	Title of the Lecture	Title of Conference/Symposia	Organized by
•	Role of Control System in Electrical Engineering	Seminar on 'Recent Trends in Electrical Engineering' in 2012	St. Thomas College of Engineering and technology, West Bengal
•	Intelligent Process Control	Seminar on 'Instrumentation-The Future' in 2012	Siliguri Institute of Technology, West Bengal
•	Advanced Control Techniques	Workshop on 'Advanced Control Systems' 2012	Techno India College of Technology, West Bengal
•	Industrial Control Techniques	Seminar on 'Industrial Process Control' in 2013	JIS College of Engineering, West Bengal

•	Design of Neuro-fuzzy Controller and its Applications	Seminar on 'Application of Soft Computing in Electrical Engineering' in 2013	Asansol Engineering College, West Bengal
•	Fuzzy Logic Based Intelligent Process Control	Symposium on 'Soft Computing Techniques in Engineering Applications' in 2013	KIIT University, Bhubaneswar, Odisha
•	Artificial Neural Network and its Applications	Symposium on 'Advancement in Instrumentation Engineering and Development in Process Automation' in 2014	RCC Institute of Information Technology, West Bengal
•	PID control and its enhancements	Workshop on 'Domain knowledge development' in 2016	Techno India College of Technology, West Bengal
•	Role of soft-computing in controller designing	Seminar on 'Application of Soft Computing Techniques in Control System Applications' in 2016	Techno India College of Technology, West Bengal
•	Neural network and its applications	Invited talk for Ph. D. course work 2016	Department of Radio Physics and Electronics, University of Calcutta
•	Smart sensing and intelligent systems	Invited talk for Short-term course 2016	Department of Electrical Engineering, NIT Durgapur
•	PID based process automation techniques	Seminar on 'Industrial Automation and Control' in	Department of Applied Electronics and Instrumentation
		2017	Engineering, Techno International, New Town
	Publishing quality research paper	Faculty development programme 2017	Engineering, Techno International, New
		Faculty development programme	Engineering, Techno International, New Town Haldia Institute of
	paper	Faculty development programme 2017 Invited talk on Research Methodology	Engineering, Techno International, New Town Haldia Institute of Technology, Haldia College of
	paper HIL simulation Electronic measuring	Faculty development programme 2017 Invited talk on Research Methodology 2018 Invited talk	Engineering, Techno International, New Town Haldia Institute of Technology, Haldia College of engineering, Pune Pailan Technical

■ Membership of Learned Societies:

- Institution of Engineers (IE)
- Institution of Electronics and Telecommunication Engineers (IETE)
- Institute of Electrical and Electronics Engineers (IEEE)
- Forum of Scientist and Engineers (FOSET)
- International Society of Automation (ISA)

■ Scholarships and Awards:

- National Scholarship, 1990-93
- Gold Medalist, University of Calcutta, 1999

■ Other Notable Activities:

- Preparation of detailed curriculum and question bank for Instrumentation Technology, State Council of technical Education, Govt. of West Bengal in 2003.
- Acted as a Faculty Council Member for Post-Graduate Studies in Engineering and Technology since 2007.
- Prepared complete documentation and presentation of the regular class room teaching materials for all the subjects (related to theoretical and practical) in both the Under Graduate and Post Graduate levels.
- Organized Summer Training Program on 'Distributed Control system' during 06.07.2009 to 31.07.2009.
- Preparation of detailed curriculum and question bank for Instrumentation Technology, State Council of Technical Education, Govt. of West Bengal in 2022.

Reviewer of following Journals:

- Elsevier- ISA Transactions
- Elsevier- Journal of Electrical Power and Energy Systems
- Elsevier- Energy Conversion and Management
- Elsevier- Journal of Manufacturing Process
- Elsevier- Engineering Science and technology, International Journal
- Springer- Int. Journal of Automation and Computing
- IEEE-Transaction on Industrial Electronics, Transaction on Industrial Informatics
- ACTA Press- Control and Intelligent Systems
- ACTA Press- Mechatronic Systems and Control
- Taylor & Francis- Chemical Engineering Communication
- SAGE- Journal of System and Control Engineering

- SAGE- Measurement and Control
- IET- Control Theory and Applications
- Wiley- Asian Journal of Control, Canadian Journal of Chemical Engineering
- De Gruyter- Chemical Product and Process Modeling
- Reviewer of Ph. D. Thesis from Anna University, Tamilnadu.
- Reviewer of Ph. D. Thesis from Jadavpur University, West Bengal
- External Expert of Ph. D. committee, Instrumentation & Electronics Engineering, Jadavpur University
- Paper Setter and Moderator of Jadavpur University.
- Moderator of West Bengal University of Technology.
- Paper Setter and Moderator of JIS University.
- Acted as Organizer of International Conference 'Modeling and Simulation 2007'
 by the Department of Applied Physics, University of Calcutta.
- Acted as Organizer of National seminar on 'Recent Trends in Power System Communication' in 2009 by the Department of Applied Physics, University of Calcutta.
- Acted as Organizer of International Conference 'Control Instrumentation energy and Communication 2014' by the Department of Applied Physics, University of Calcutta.
- Acted as Organizer of International Conference 'Control Instrumentation energy and Communication 2016' by the Department of Applied Physics, University of Calcutta.
- Acted as Member of Technical Program Committee of International Conference 'Computational Intelligence and Network CINE 2016' by KIIT University, Bhubaneswar, Odisha.
- Acted as Academic Auditor, Applied Electronics & Instrumentation Engineering, Techno India College of Technology, New Town.
- Member of Technical Program Committee of International Conference 'Applied Signal Processing ASPCON 2018' by IEEE Signal Processing Society, Kolkata Section.
- Participated as a technical expert for Door Darshan organized carrier counseling program 'Ki Hote Chai' on Instrumentation and Electronics Engineering.